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The stability of a magnetic-velocity shear layer, of thickness L, to hydromagnetic- 
gravity waves of zonal wavenumber k is investigated analytically, within the 
Boussinesq approximation, in the situation where E (  = kL) is small. It is found that, 
in addition to the unstable modes of the corresponding sheet, new modes of instability 
of growth rate of order ez are also present provided one critical level exists within the 
layer. The existence of one critical level also effects over-reflexion of stable modes. 
Furthermore it is shown that a magnetic shear acting alone can lead to instability as 
well as effecting over-reflexion of stable modes. 

1. Introduction 
The stability and propagation properties of wave motions in magnetic shear or 

velocity shear or both are relevant to many geophysical, astrophysical and engineering 
problems (see, for example, Drazin & Howard 1966; Dickinson 1968; Baldwin & 
Roberts 1970, 1972; Moffatt 1976; Drazin & Davey 1977; El Mekki, Eltayeb & 
McKenzie 1978). However, because of the lack of analytical solutions for general flow 
profiles or general field profiles, most stability studies have been confined to vortex 
sheets or current sheets (see, for example, Miles 1957; Fejer 1964; McKenzie 1970; 
Grimshaw 1976; Acheson 1976) on the belief that the sheet treatment represents an 
adequate approximation to a thin shear layer (in the sense that the thickness of the 
layer is much smaller than the wavelength of the relevant waves). Such an approxi- 
mation has been confirmed for gravity waves in a Boussinesq fluid subject to a linear 
velocity shear by Eltayeb & McKenzie (1975). On the other hand, Blumen, Drazin & 
Billings (1975) in their study on the stability of an inviscid compressible shear layer 
isolated modes of instability which have no counterparts in the corresponding vortex 
sheet treatment. 

The problem of reflexion of waves by a vortex sheet or current sheet has also been 
generally accepted as providing a reasonable representation of a thin shear layer. 
However, most of the thoroughly studied vortex and current sheets predicted over- 
reflexion in the circumstances in which at least one critical level is embedded within the 
sheet. On the other hand, recent studies on the reflectivity of various types of waves by 
magnetic-velocity shear (Eltayeb 1977; Eltayeb & McKenzie 1977; El Sawi & Eltayeb 
1978) have demonstrated that the presence of critical levels can enhance over-reflexion. 

The above discussion poses the following questions. Do the properties of thin shear 

-f Permanent address : School of Mathematical Sciences, University of Khartoum, Khartoum, 
Sudan. 



2 I .  A .  Eltayeb 

layers generally differ from those of the corresponding sheet and, if so, what are the 
special cases, if any, which match uniformly with the sheet '! What influence does the 
shear profile play in the stability and reflectivity properties of thin shear layers? What 
effect do critical lerels, within the context of the dissipationless theory, have on these 
properties 2 The purpose of the present study is to shed some light on the answers to  
these questions. 

Acheson (197G) made a detailed study of the reflectivity and stability of a current- 
vortex sheet in a Boussinesq fluid. In this paper we replace Acheson's sheet by a thin 
shear layer, of thickness L. Adopting e ( = kL, where lc is the zonal wavenumber) as a 
small parameter, we develop an expansion scheme in E to study the stability, reflectivity 
and transmissivity of the shear. For general flow and field profiles within the shear, 
the stability of the system to order c is found to be governed by the same conditions 
governing the stability of the current-vortex sheet. This result hinges on the fact that  
to leading order of approximation the solution within the shear layer can adjust itself 
in such a manner that i t  is regular everywhere and therefore unaffected by the presence 
of critical levels. When higher-order terms are considered, however, the presence of 
critical levels which appear a t  order E in the ,solution within the layer is shown to change 
the stability of the system. Since the influence of the thin shear on the frequency w of 
the waves is order 19, attention is focused on the neutral modes of the current-vortex 
sheet with the purpose of investigating (anaJytically) the possibility of the occurrence 
of new modes of instability due to  the presence of the shear. If only one critical level 
exists within the shear a mode of instability which is absent in the current-vortex sheet 
is present here and has a growth rate of the order €2. 

The reflexion of hydromagnetic-gravity waves by the shear is also studied. It is found 
that the presence of only one critical level within the thin shear also effects over- 
reflexion. However, the over-reflecting and unstable rbgimes due to the presence of 
the same critical level involve different modes. This is demonstrated by the analytical 
results of a linear magnetic shear in the absence of a flow where over-reflexion is present 
in a stable magnetic shear. 

I n  3 2 we define the problem; in 5 3 we study the linear shear models; in 5 4 we discuss 
the general magnetic-velocity shear and in 3 5 some concluding remarks are made. 

2. Definition of the problem 

a velocity U in the presence of an AlfvBn velocity V, where 
Consider a Boussinesq fluid in the presence of gravity, Suppose that it is flowing with 

(2.2) 

U,,V,, for 0 x (region l), 

U3,V3 for L 6 z (region 3). 

U ( z ) ,  V ( z )  for 0 6 x 6 L (region 2 ) ,  

Here 2 is a unit vector along the horizontal axis Ox and Oz is the upward vertical 
co-ordinate axis. We shall assume that U and V are continuous a t  both z = 0, L. The 
state (2,1),  (2.2) is consistent, with the basic equations of motion, induction and 
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continuity provided the total pressure is in hydrostatic equilibrium (cf. Eltayeb 1977, 
3 4 ) .  If we superimpose perturbations of the normal mode type 

f ( ~ ,  z ,  t )  = Re {f(z) exp i(wt - kx)), (2 .3)  

on the above basic state, linearize the equations of motion, induction and continuity, 
adopt the Boussinesq approximation, and eliminate all variables in favour of the 
vertical component of velocity, w ,  we obtain 

Pw"+P'w'+(k(PU"+P'U')/0-Pk~-k~N2/0~}w = 0, (2 .4 )  

0 = w - k U ,  P = -1+k2V2/62, (2 .5 )  

in which the intrinsic (Doppler-shifted) frequency ij and P are defined by 

and N is the usual Brunt-Vaisala (buoyancy) frequency. The perturbation in total 
pressure, p ,  which we will require later is 

p = iP(Bw'+ kU'w)/k2. (2 .6 )  

The accent in (2 .4 )  and (2 .6 )  denotes differentiation with respect to the argument. 
We find it convenient in the analysis below to  make the transformation 

w = P-$4 ( 2 . 7 )  

so that (2.4) assumes the normalized form 

k3V(k v v ' 2  + 2 0  v U' + k VU'2, 
( 2 , 9 )  

The boundary conditions associated with the system are the continuity of w and p at 

( 0 2  - k2 V2)2 + 

both x = 0, L. Thus 
[w] = 0 ,  [0w'+ kU'W] = 0, (2.10) 

where the square brackets denote the jump in the quantity within. In addition the 
solutions must satisfy extra conditions in regions 1 and 3.  Suppose a wave of given 
amplitude I is incident on the shear from region 1 .  Then the solution can be written as 

(2 .11)  I I exp (im, z )  + R exp ( - im, z )  in region I, 

w = Aw,(z) +Bw2(z)  in region 2, 

in region 3,  [ T exp ( im ,  x )  

where w, and w2 are any two independent solutions of (2 .4 )  in region 2, and m, and m3 
are governed by the dispersion relation 

m2 = k2[-1++2/(02-k2VZ)], (2 .12a)  

when U and V take the values appropriate to  regions 1 and 3.  When the wavenumbers 
m, and m3 are real, they must be chosen such that the incident wave transports energy 
toward the shear layer while the reflected and transmitted waves transport energy 
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FIGURE 1. The wave-normal curves for hpdromagnetic-gravity waxes in a Boussincsq fluid. ( a )  
N2 < w2, ( b )  N2 > w2. In  both (a)  and ( b )  

k , ,  = w / ( U +  V ) ,  k ,  = { o U k [ d V 2 + N 2 ( T J 2 -  V z ) ] i } / ( U 2 -  V') 
and in ( b )  U,,, = (1 -w2/N2): V .  The solid (broken) curves refer to U < V ( U  > V ) .  Tho arrows 
denote the direction of the group velocity. The figure is drawn for w ,  U ,  V > 0. 

away from the layer. The direction of propagation of energy flux is determined by the 
group velocity (Lighthill 1965). The energetics of the present system have been studied 
in detail by Acheson (1976). The component of group velocity in the vertical direction 
is given by 

awlam = - mk2N2/D(m2 + k2)2 ,  (2.12 b )  

so that the radiation condition (m, real) is determined by choosing m,0, < 0. The wave- 
normal curves and the group velocity are summarized in figure 1. Now, if either m, or 
m3 is imaginary, it must be chosen such that the solution decays as IzI tends to infinity. 

For the problem of reflexion, m, is always real, but m3 may be real or imaginary, 
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while for the stability problem no wave is incident on the layer (i.e. I = 0) and in 
general both m, and m3 may take real or imaginary values. 

Our interest here lies in the problem of the thin shear layer (or long waves) so that 
JkLl < 1. It is then natural to employ the quantity 

e = k L  (2.13) 

as a small parameter in an expansion scheme. Thus we let 

so that 

0 = wo+€w,+€2w,+ ..., ( 2 . 1 4 ~ )  

$J = $J0+"1+"2$J2+..., (2.14 b )  

R = Ro +€Rl + e2R2 + . . . , 
T = To + €TI + e2T2 + . . . , 

(2.14 c)  

(2.14d) 

g = g,+eg1+~292+..., (2.15 a) 

w = wo + €W1+ €2W2, (2.15 b)  

( 2 . 1 5 ~ )  = m(0) + + m'"e2 + . . . , 
where = m / k .  (2.16) 

We now substitute (2.13)-(2.16) into (2.7)-(2.12) and equate the coefficients of 
6" (n = Q,1,2 ,  . . .) in each resulting equation to zero to obtain a hierarchy of sets of 
equations which can be solved successively. This will be carried out in the next two 
sections. 

Since we are interested in comparing the present problem with the corresponding 
sheet treatment of Acheson (1976), we shall require U or V or both to vary appreciably 
over the thin shear no matter how thin it may be. For this purpose U and V must take 

(2.17a) 
the form 

v =  v,+v,H(Z),  (2.17 b)  
u = u, f u, F ( Z ) ,  

where 

Uo = U3-Ul,  V, = V3-V,, Z = z/L,  P(0) = H(0)  = 0, F(1) = H ( 1 )  = 1. (2.18) 

3. Stability and reflectivity of a linear shear 

where and U is linearly sheared in region 2. Thus 
I n  this section we first assume that V is uniform, but necessarily non-zero, every- 

v, = 0, P(Z)  =z. (3.1) 

v ,=v>o .  (3.2) 

Since V occurs only in the form VZ, we assume, without any loss of generality, that 

It transpires that considerable simplifications occur in the present problem if we 
introduce the quantity X defined by 

X = Lj/kV, 0 = o 0 - k U .  (3.3) 

Following the procedure outlined in the penultimate paragraph of 3 2 above we now 
proceed to solve the stability and reflectivity problems. 
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3.1. The stability analysis 

Here the solution is given by (2.1 1) with I set equal to zero. We will find it sufficient to 
consider the three problems n = 0, 1,2 in order to  determine the stability of the system 
to leading order and it is convenient to consider the successive problems separately. 

Problem 0. The zeroth-order problem (i.e. n = 0) is 

$;+go$, = 0, go = (X2- 1)-2, wo = $hoX/(1-X2)t, (3.4) 

[wO] = 0, [w,-Xwh] = 0 a t  X = X,, X,, (3.5) 

subject to the boundary conditions 

where X, and X, are the values of X, as defined by (3.3), at 2 = 0, I respectively, and 
the accent denotes differentation with respect to the argument (X). 

The second-order equation (3.4) can be solved formally by transforming it  into the 
(degenerate) hypergeometric equation and using standard textbooks. Omitting the 
details, the two linearly independent solutions can be written simply as 

$hp = (1 -X2)), $(2) , = (1-X2))lnx, x =  (X+l) / (X- l ) ,  (3.6) 

so that whl) = X, wh2' = XInx.  (3.7) 

RO = wl)(xl), TO = w 0 ( x 3 ) ,  (3.8) 

(3.9) 

= "0(x3) -x3wh(x3)> (3.10) 

Now the boundary conditions (3.5) give 

0 = Wo(X1) - X,Wh(X,), 

where 

Jt then immediately follows that 

?.(lo = A , w;; ) + B, t o p  . (3.11) 

B, = 0, To = A, = A0X3, R, = T,Xl/X3. (3.12) 

Thus, to leading order, the solution within the shear is regular everywhere whether 
critical levels (occurring where X2 = 1) are present or not. Moreover, the expressions 
(3.12) for the amplitudes R, T, A ,  and B, are not sufficient to  determine the stability 
criterion and i t  is necessary to proceed to the next problem. 

Problem 1. When n = 1, we have 

& + s o $ h 1 =  -g1$0, (3.13) 

with (3.14) 

and the boundary conditions take the form 

R1 = wI(X,), Tl -i- %i0) To = w,(X,), (3.15) 

(3.16) 

(3.17) 

where 8, = b J l / k v ,  a = u,/v. (3.18) 

- i ~ ~ O ) a - - ~ R  o - - w~(Xi)-Xilwi(Xi) +G,X;lwo(Xi), 

iap a -q ,  = w;(x3) - x,1 wl(X,) + f,x3wo(x3), 
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From the theory of differential operators, it is well known that, for (3.13) to possess 
a solution, the right-hand side must be orthogonal to the solution of the adjoint 
homogeneous equation. Noting that the homogeneous part is identical with (3.4) and 
using the elementary complex inner product (since (b, is complex), we find that the 
necessary solvability condition is obtained by multiplying (3.13) by 4: (the complex 
conjugate of 4,) and integrating between X ,  and X,. Thus 

+GI IAo12h1, (3.19) 
where 

(3.20) 

The integral on the left-hand side of (3.19) is convergent if the interval [X,, X,] 
does not include any of the singularities X = & 1.  If, however, one of the two singu- 
larities lies in that interval, then the integral should be interpreted as the Cauchy 
principal value of the integral which can be obtained by contour integration along 
a path suitably dented at  the singularities (see the appendix). It can be shown, 
without going into details here, that the Cauchy principal value exists for all the cases 
required here. Such a procedure gains support from the detailed study of the critical 
layer for gravity waves in a shear flow (Baldwin & Roberts 1970) in the presence of 
weak viscous diffusion which yields the same results obtained by Booker & Bretherton 
(1967) for the corresponding inviscid model. (The inclusion of diffusion in the present 
model renders the problem extremely difficult and its treatment is outside the scope 
of the present note (see Baldwin & Roberts 1972).) The same procedure applies to the 
integral on the left-hand side of (3.34). 

Provided (3.19) is obeyed, (3.13) can be solved in terms of complementary and 
particular integrals, and since the complementary function is known (cf. (3.4)), the 
general solution can be written down explicitly. However, for our purposes here it is 
sufficient to write it in the form 

w1 = A , X + B , X l n ~ + 6 , w p .  (3.21) 

Now application of (3.16) and (3.17) to (3.21) yields 

- ia-l[rnpR,( 1 - XZ,)/X,  + Ep)To( 1 - X i ) / X 3 ]  

+-) x3 [w~(X3)-wP(X,) /X,+A,] ] .  (3.22) 

From (3.20) and (3.22) we deduce that 

and, after using the last of (3.12), 
8, = 0,  (3.23) 

%p( 1 - X ? )  + mp( 1 - X i )  = 0. (3.24) 

This last equation gives the normal modes of the system which must be solved together 
with the appropriate conditions on ml and m3. It is to be noted that, despite appear- 
ances, this equation is identical to that obtained for the corresponding sheet treatment 
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FIGURE 2. Geometric representation of the relations (3.25) and (3.49). Here X ,  = 

Y, = 
Y = 

(1 +p2)*, 
(1 -pi)$, considered to be both real. The straight discontinuous lines refer to X = & 1, 
1. In ( b ) ,  the solid (broken) curves refer to pi < 1 (pi > 1).  

by Acheson (1976). Now (3.24) shows that the natural modes (i.e. X ,  and X ,  real) must 
occur for i%$o)/?ii$o) real, so that m, and m, are either both real and the shear will 
radiate on either side or both imaginary and the solutions will decay exponentially on 
either side of the shear. This is particularly evident when we express the dispersion 
relation (2.12) in the form 

m2 = - 1 +P2/(X2--  I) ,  p2 = N2/k2V2 (3.25) 

(see figure 2). Evidently Ei  is real only if 

By using the relation 
1 < x2 < 1 +E. 

X3 = X , + a ,  

(3.26) 

(3.27) 

the roots of (3.24) occur when X ,  takes the values 

x,, = -*a, XIC* = - * a + ( l + g p z - p ) t ,  (3.28) 

which are the same as those obtainable for the corresponding sheet treatment. The 
mode X,, satisfies X,, = - X,,  and with the help of figure 2 a  and the radiation condi- 
tion we see that such a mode can occur for real m, and m3 only if the shear contains two 
critical levels and for imaginary m, and m, if either two or no critical levels lie within 
the shear layer. On the other hand, the modes Xlc* can occur if one critical level lies 
inside the shear and both m, and m3 are imaginary. Thus the modes (3.28) are identical 
to  those of the sheet model because the influence of any critical levels within the shear 
is not felt to order E .  However, when higher-order terms are taken into account the 
situation is different. Indeed when we solve (3.15)-(3.17) together with (3.23) we find 
that 

(3.29) 

B, = ia-lmpTo( 1 - x*3/2x3, 
A ,  = R, /X , -  B, In x1, 

R l / x l  = (c + imh0)T0) /X3 + Bl In (x1/x3), 
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so that B, + 0 and the influence of any critical levels present within the shear layer is 
bound to be felt a t  the next-order terms. 

Problem 2. The order-e2 terms give (using the fact that 8, = g, = id1) 1,3- - 0 ) 

4;+g042 = -92409 (3.30) 

+a-2 - 1 f- [ (X2-1) p2 1 ’ 48,X 
g2 = - (X2- 1)3 

w 2 = - -  X$2 02wo 
(1 - X2)t X2( 1 - X2) 

(3.31) 

(3.32) 

The boundary conditions are 

[w2] = 0) [w; + 0,w; - x-lw2] = 0) (3.33) 

and w2 is obtained from (3.21) by replacing the subscript 1 by 2. 
The consistency condition (see problem 1 above) for (3.30) gives 

+ mi0)(T, + ~ E Z & ~ ) T ~ )  (1 - X$)/X3], (3.34) 

where h, is given by (3.20). If we now use (3.29) and (3.31) we obtain 

in which 
G2 = C/D,  (3.35) 

c = - gsmp( 1 - xy - (1 + p) +$(Xi + x,x3 + XZ,),) 

(3.36) i 
The expression S must be interpreted here as containing the appropriate phase jump 
a t  every singularity occurring where X2 = 1 (if any). Now for the linear shear con- 
sidered above the shear layer can contain either (i) no critical levels or (ii) one critical 
level or (iii) two critical levels. If no critical levels exist then X, and X, have the same 
sign and consequently Sis real and hence 8, is also real. I n  case (iii) it can be shown (see 
the appendix) that no net phase jump occurs and again G2 is real. Thus in both cases (i) 
and (iii) the presence of the shear only serves to modify the frequency of the neutral 
modes and does not lead to any instability, a t  least to order €2. If, however, only one 
critical level exists within the shear then a net phase jump is present and8,is necessarily 
complex. Indeed it can be shown that if I Us( > I Ull then the phase jump in S is - n. 

As we pointed out in the introduction, our interest here lies mainly in the stability of 
the neutral modes (3.28), when the quantity within the square root sign is positive, 
and the influence of the shear on them. Since the mode X,, occurs when X, = - X, (and 
with the help of figure 2) we see that such a mode can only occur if the layer contains 
either no critical levels or two of them, in which case 6, is real and the presence of the 
shear only modifies its frequency. I n  fact it can easily be deduced that all en (n = 1 ,2 ,  
3, . . .) are real for this mode. Thus this mode is always neutrally stable according to the 
dissipationless theory. (Incidentally this mode is essentially the same neutral mode of 
instability which gave resonant over-reflexion in the absence of the magnetic field 
(Eltayeh & McKenzie 1975).) The modes Xlc*, on the other hand, are different, and it is 



10 I .  A .  Eltayeb 

5 

4 

)*. 

2 

1 

0 1 2 - 
X 

3 4 

FIGURE 3. The regions of instability of the various unstable modes of the linear velocity shear 
model in the presence of a non-zero Alfv6n speed (see $ 2.1). The curves I and I1 are 

P = 2 X + P ,  P = x z - 2 2 ,  

and they enclose (8,) the instabilities of growth rates O(@) introduced by the shear. The dis- 
continuous curve bounds the region S ,  of instabilities, also present in the corresponding sheet 
treatment, satisfying (3.40) so that P = $x2 - 2. The curve I1 touches the discontinuous curve 
a t  = 2 so that the two curves form a cusp there. 

possible that they occur in a shear containing one critical level, in which case Sis complex 
and 8, is necessarily complex. Consequently the presence of a shear will tend either to  
amplify or to suppress these modes. Now if X ,  = Xlc+ then X, = Xlc+ + 01 = - Xlc- 
while X, = Xlc- implies that X, = - Xlc+. Thus if Im (8,) is positive for one mode it 
will be negative for the other. Thus, provided 8, is complex, one mode amplifies and 
the other decays. Now from (3.24) we see that Eio) and mio) are either both real or both 
imaginary and from figure 2 we deduce that instability is possible onlyif both%i0) and 
ELo) are imaginary, and the solutions of the unstable mode decay exponentially as 1x1 
tends to infinity on either side. The condition for instability due to the presence of the 
shear layer can then be written as 

Jmin (XlC+, XIcJ I < 1, jmax fXIC+, XlCJ I > (1 +P”4 
1+1011 > (1+P”4, 1+$/32--,O12> 0. (3.37) 
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These inequalities can be shown to reduce to 

la12-21al < p < la]2+2Ial. 

In  figure 3 we illustrate the region of instability (3.38) in the (a, 8)  plane, where 

(3.38) 

x = la] ,  P = p ,  (3.39) 

to facilitate comparison with the other condition of instability 

l+gpz-$a2 < 0,  (3.40) 

common to both layer and sheet models. It is immediately observed that the domains 
(3.38) and (3.40) do not intersect even if the last of (3.37) is discarded. We thus con- 
clude that the presence of the shear introduces new modes of instability. 

3.2. Over-rejexion 
If we assume that I =I= 0 and (3.24) is not satisfied and carry out the above analysis we 
obtain 

Ro ??iio)( 1 - XZ,) - mio)( 1 - X i )  _ -  To - 
Ep(  1 - XZ,) + mp( 1 - X,Z) ’ 

2Epy 1 - XZ,) x, - =  
I 1 X,[%$O’(I -XZ,) + % p ( l  -X,Z)]’ (3-41a) 

Bo = 0,  A0 = T0/X3, R,/I = iE$O)( 1 - XZ,) 6(Ro/1), (3.41 b )  

while B, is given by the first of (3.29), and T, and A ,  can be obtained from the last two 
of (3.29) upon substituting for Rl. It must be noted that here m, is real so that X ,  is also 
real. Now to leading order both R and T (as represented by Ro and To) are not influenced 
by the presence of critical levels and they take the same values as in the case of the 
corresponding sheet treatment. However, the order-s corrections involve 6 and 
according to the arguments advanced in the preceding subsection a net phase jump is 
present only if one critical level is present. Assuming for definiteness that X ,  > 1,  the 
pha,se jump in 6 is -n- if lU,l > lU,l (see appendix). Also in this case m3 must be 
imaginary (see figure 2) and mk > 0 (see figure 1 ) .  Thus to first order 

IR/II = 1 + 2 ~ e r n ~ O ’ ( l - X 2 , ) ~ n  > 1 (3.42) 

and ovcr-reflexion, though weak, takes place. Now the condition for (3.42) to hold for 
some X ,  is 

I < -“; < 1 + p ,  1; < 1 ,  (3.43) 

so that the over-reflecting regime lies outside the domain of instability as clearly shown 
by comparing (3.38) and (3.43). Thus the presence of one critical level effects both over- 
reflexion and instability but each phenomenon involves different modes. Moreover, 
over-reflexion of the sheet treatment (and the shear treatment containing two critical 
levels) involves the interaction of positive- and negative-energy waves while the 
critical level over-reflexion predicted here involves only positive-energy waves. It is 
already known, of course, that over-reflexion of positive-energy waves can exist even 
in the absence of critical levels (Eltayeb 1977) but the significance of the present 
situation is t,hat orer-reflexion occurs in a sfahle rCgime. 
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3.3. Linear magnetic shear 

Before we conclude this section we shall examine the situation in which the flow is 
uniform everywhere and V varies linearly from V, in region 1 to V, in region 3 .  Thus 

u, = 0,  H ( 2 )  = 2. (3 .44 )  

(3 .45)  

As a result of the continuity of U ,  the boundary conditions (2.10) simplify to 

[w] = [w’] = 0. 

It is also found that the quantity Y defined by 

Y = kV/O,  6 = wo-kU,,  (3.46) 

can be used as the independent variable in place of 2 to reduce the present problem to 
a form similar to that discussed in the preceding two sections. In particular we have 

(3 .47a)  go = (1 - Y2)-2, g1 = - 2G1( 1 + Y2) (1 - Y2)-3) 

g 2  = ai2[ - 1 +/3f/(I - Y’)] +o,W- 2G2( 1 + Y 2 )  (1 - Y2)w3, (3 .47b)  

(3 .48 )  where a, = /I&/&, 1; = N2/Q2, ~1 = wJO, G2 = w 2 / 0  

and W is a complicated function of Y and is not written down explicitly because it is 
not needed. Also the dispersion relation of the system assumes the form 

- 

m2 = - 1 +&/( 1 - Y2), (3 .49 )  

and is illustrated in figure 2 ( b ) .  
The similarity of the problem to that discussed in $5 3.1 and 3.2 permits us to omit 

the details. It should be remarked, however, that the continuity of U makes the 
solution within the shear different. In  particular the zeroth-order stability problem 
gives 

so that the leading-order solution wo is a constant. 

B, = 0, A ,  = To = R,, W ,  = A,, (3.50) 

The first-order (n = 1)  problem yields 

(3.51) 

Realizing that Y is essentially the inverse of X ,  we recognize that (3 .51 )  is identical to 
(3 .24) .  If U, + 0 then provided I VI increases through IUl[ the results of $0 3.1 and 3.2 
hold good here. If, however, U, = 0 or 1 Ull does not lie in the range of I VI then the roots 
relevant to this case are 

(3.52) 

and instability in the presence of stable stratification (i.e. N 2  > 0) is not possible. Since 
(3 .51 )  demands that m1/m3 be real we immediately (using the radiation condition) note 
that even neutral stability is not possible for real m, and m3. When m, ,  m3 are both 
imaginary, on the other hand, neutral stability is possible in a small region of the 
(/3;, Jall) plane which can be shown to be 

6, = i- *“2+ k2( Vf + V 3 ] 4  

O < Ja,(2-2 < /3; < min(1, 2 Jall - 1a112). (3.53) 

Now this domain occurs for a situation in which one critical level exists within the 
shear and the analysis of 5 3.1 can easily be applied to this case to show that the 
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presence of the critical level promotes instability by imparting a growth rate of O ( 8 )  
to the neutral modes (3.52) which satisfy (3.53). 

The reflexion problem, solved along the lines of the analysis of 5 3.2 above, yields 

3 - E p (  1 - Yq) - Ep’( 1 - Y2) 
I ZfJ)(l- Y ; ) + m p ( l -  Y;)’  I I %p’(l- Y ; ) + m p ’ ( l -  Y32)’ 

2rn‘10’( 1 - Y ; )  - 3 T,=A,= (3 .54a)  

(3.54h) 

When U, $. 0, the results deduced in 5 3.2 for critical level over-reflexion hold good here 
provided IV( increases through lull. However, the most interesting situation here 
occurs when U, = 0 and no flow is present. Noting that propagation takes place only for 

(3.55) 

so that, if we take Y, in this range and consider a situation in which 1 V1 increases from 
(V,J in region 1 to IV31 in region 3 in such a way that IY31 > 1, then the transmitted wave 
is evanescent and a critical level exists within the layer. The phase jump in 6 is then 
+ T (see appendix) and 

]R/II  = 1 - 2m,L(1- Y;) +O(L2) > 1 (3.56) 

since m, < 0 (see figure 1). Thus critical level over-reflexion occurs even in the absence 
of a flow. 

max(0,i-p;)  < Y 2  < 1 ,  

4, Stability and over-reflexion by a smooth shear 
I n  this section we shall investigate the stability and over-reflectivity of the smooth 

shear layer, i.e. the case in which U and V vary smoothly from U,, V, in region 1 to U,, 
V3 in region 3 so that both U‘ and V‘ are continuous everywhere. The boundary condi- 
tions then take the form 

[$I = [$’I = 0. (4.1) 

It turned out that the stability and reflectivity properties of the general shear are 
similar to those of the linear shear studied in the preceding section. The influence of the 
profiles of U and V on the stability is to modify the numerical value of the growth rate 
1Im ( w z ) J  while the order of magnitude remains the same (i.e. e2) .  For this purpose no 
detailed calculations will be presented here but only a description of the first-order 
system is given in order to  show the manner in which the solution adjusts itself to give 
the results similar to those of the linear shear despite the difference in the boundary 
conditions. 

The leading-order problem (n = 0) is here governed by 

(4.2) 

5% + 90$0 = 09 
k2( V’2 + v V”)  + k U”0, k3 V (  k v V’2 + 20, V‘ U’ + VU’2) 

9 0  = 0 i - k 2 V 2  + (0; - k2 V 2 ) 2  

where #o must satisfy (4.1) above. Writing (90 in the shear as 

$0 = ~ o $ ! W  + BoQI?(a), (4.3) 
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it can be shown that 

in  which 

The application of the boundary conditions (4.1)-(4.3) then gives 

ROPW = AO$&’)(O) +Bo$p)(O), 

T,Pi = An@(l)+B0yq2)(l) ,  

0 = A()r$p’(o) +Bo&)~)’(l), 

0 = ~ , ~ ~ ) ’ ( l ) + ~ ~ ~ ~ Z ) ’ ( l ) .  

(4.Ga) 

(4.6b) 

( 4 . 6 ~ )  

(4.6d) 

Since U’ and V‘ are both assumed to be continuous a t  2 = 0, 1, so that they vanish 
there, we see that 

It then follows that 

in w 11 i c h 

q5p’(o) = $pp) = 0. (4.7) 

B, = 0, To = A,&,, R, = 9,To/9,, (4.8) 

(4.9) 
h w1 = wo - kU, and 9, = wo - kU,. 

When we allow for the transformation (3.3) we see that (3.5) and (4.8) are identical. 
Consideration of higher-order terms leads to (3.23) and (3.24) and an expression similar 
to (3.35). The conditions for instability are then similar to those of the linear shear. 

Over-reflexion by the smooth shear can also be shown to have the same properties 
as for the linear shear. The similarity between the linear and smooth shear can be 
explained in terms of the energy flux in the vertical direction (see $ 5  below). 

5. Concluding remarks 
The stability of hydromagnetic-gravity waves in the presence of a thin layer (in the 

sense that 1cL g I ,  where k is the zonal wavenumber and L the thickness of the shear 
layer) bounded by two uniform states on either side has been studied when the fluid is 
Boussinesq. In the special case in which the Alfvh speed is uniform (but necessarily 
non-zero) everywhere and the flow within the layer is linearly sheared, analytical 
results are obtained. I n  addition to the modes of instability and neutral stability 
present in the corresponding sheet (i.e. the case in which the flow experiences a sudden 
discontinuity) whose growth rates are here modified by an amount O($) the shear 
layer also possesses modes of instability whose growth rates are of the order ~ 2 (  = Ic2LZ). 
These ‘new ’ modes of instability are effected by the presence of one critical level within 
the shear and correspond to disturbances that decay on either side of the layer. 
Although the growth rates of these modes are only order €2, nevertheless they may be 
more important than those also present in the sheet treatment since the new modes 
occur for smaller values of 1.1 (see figure 3 above). Thus for a given fluid (i.e. given N )  
and given uniform states in regions 1 and 3 the new modes of instability will be present 
while the others will not, if 1.1 is not too large. Furthermore, if the jump in the flow 
speed is increased, keeping everything else fixed, i t  would be expected that, by the time 
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1.1 is large enough to make the mode Xlc* (cf. (3.28)) unstable, the amplitude of the 
new mode of instability might acquire a large value. However, such a situation cannot 
be substantiated by the above linear analysis and a weakly nonlinear theory may 
provide some insight into the situation. Such a treatment is left to another publication. 

Over-reflexion by the linear shear is also studied. It is shown that in addition to the 
over-reflecting regimes predicted by the corresponding sheet treatment other over- 
reflecting regimes are a150 present. These new regimes are again present onlywhen one 
critical level lies within the shear. However, in contrast to the unstable modes men- 
tioned above, these over-reflecting modes are associated with waves propagating in 
region 1 (i.e. ml real) and decaying exponentially in region 3 (i.e. m3 imaginary). Now 
the relationship between over-reflecting and unstable (or neutrally stable) regimes is a 
subtle one. For a given situation (i.e. given fluid and basic state) the shear layer (or 
sheet) may be unstable to certain modes and over-reflecting to others. When con- 
sidering over-reflexion, m, is assumed real and consequently w and k are also real. 
According to the linear normal mode treatment, only those neutral modes with real m, 
(and m3) are obviously related to over-reflexion because resonance will occur. Other 
modes of instability or neutral stability will involve different values of m, (and m3), 
and k and although they may be present for such a state they are not obviously related 
to over-reflexion. On the other hand if the incident wave is viewed as a wave-packet 
it will involve a small frequency and zonal wave number bands and unless the over- 
reflecting modes involve frequencies and wavenumber swithin such bands no relation- 
ship between the two modes will exist, if nonlinear interactions are ruled out. With 
this in mind the new over-reflecting and unstable modes of the shear can occur 
independently. 

I n  $3.3  we discussed the linear magnetic shear to show, analytically, that  both 
instability and over-reflexion are present even if af low is absent, provided one critical 
level exists within the shear. Here also the unstable and over-reflecting regimes involve 
different modes. This case provides a marked contrast with the current sheet treatment 
in which instability (as opposed to neutral stability) and over-reflexion are both non- 
existent. 

Both the linear magnetic and the linear velocity shear-layer models discussed in the 
preceding paragraphs of this section gave the normal mode equation predicted by the 
corresponding sheet treatment, in the leading order, and in search of identifying what 
type of thin shear will tally with the corresponding sheet in the limit of vanishing 
thickness we examined the general case of a magnetic-velocity shear in which both the 
flow and Alfven speeds and their first derivatives are continuous everywhere (i.e. the 
smooth shear). Even in this general case the stability problem is found to  be identical 
with that obtained for the linear shear to  leading order. The growth rate of the new 
mode is also of order €2 but the actual value depends on the profiles of U and V .  The 
stability and reflectivity of the general shear are in essence similar to those of the 
linear shear and the influence of the profile of the shear manifests itself only in a 
quantitative sense. It should be pointed out here, however, that this conclusion about 
the role of the shear profile may not hold good in the presence of all types of constraints 
(see, for example, Ahmed & Eltayeb 1980), particularly when the assumption I E ~  1 is 
relaxed. 

Within the context of the present problem the similarity of the sLability and 
reflectivity of the linear and smooth shear can be clarified by appealing to the total 
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energy flux (i.e. the energy flux as measured by a stationary observer) in the vertical 
direction. This is given by 

F== - &,(dP(lL"ClLcl/dz - ?Ddzrl"/rx'z)/k2 (5.1) 

(cf. Acheson 1976, $ 2; Eltayeb & McKenzie 1977, 9 3 ) ,  and is related to the wave- 
invariant, (Eltayeb 1977, $ 2 )  of the present system defined by 

by the relation 
.F= $ p o W d / k 2 .  (3.3) 

Kow the use of the boundary conclitions (2.10) in (5.1) shows that F i s  continuous a t  
z = 0, L whether the shear is linear or smooth and by using ( 5 . 2 )  it follows that F i s  
continuous and constant (for given o and k) everywhere except at the critical levels, 
where i t  jumps from one constant value on one side to another constant value on the 
other side of the critical level. This can easily be seen by noting that if, F O  refers to 
region i, then 

d = Re ( - iQ*$'), ( 5 . 2 )  

(5.4) 

to leading order. Thus any divergence of the shear results from those of the kortex 
sheet must be due to the influence of critical levels. Now the presence of two critical 
levels is found to yield a zero net phase jump and therefore the system behaves like the 
current-vortex sheet. In  terms of the wave-normal curves of figure 1 the zero net phase 
jump can be interpreted in terms of the energy flux by noting that a wave approaching 
a critical level from the propagating side deposits some of its energy there to energe 
evanescent on the non-propagating side and remains evanescent until i t  encounters 
the other critical level where i t  picks up an amount of energy exactly equal to the 
amount lost a t  the first critical level to emerge as a propagating wave on the other side 
of the second critical level. I n  the case of the occurrence of one critical level the net 
phase jump is non-zero and corresponds to energy absorption or emission at  the 
critical level, and it is the situation of energy emission that leads to instability or 
over-reflexion. 

The numerical studies by Blumen et al. (1975) and Drazin & Davey (1977) on the 
stability of a shear layer of compressible isothermal fluid have shown that, in the 
presence of one critical level, one unstable mode of the shear reduces to that of the 
corresponding sheet in the limit of long waves and also new modes of instability wholly 
due to the presence of the shear are also present. These results are in general agreement 
with the analytical results obtained above for an incompressible fluid in the presence 
of both velocity and magnetic shear in the sense that the neutral mode Xlc+, as in 
(3.28), is destabilized by the presence of the shear and also because the new mode of 
instability has a growth rate that  is much smaller than the growth rates of those present 
in the sheet treatment. However, it should be pointed out that the instabilities located 
here are due to the presence of the hydromagnetic critical levels which are predicted 
by a WKBJ treatment (see figure 1 above) and across which the total wave energy 
flux exhibits a discontinuity while the model of Blumen et al. (1975) contains a singu- 
larit,y whose presence is due to the presence of the shear nrd across which the total 

~ 
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wave energy flux (which is proportional to the mean Reynolds stress 7 exhibited in 
figure 6 of Blumen et al. (1975)) is continuous (EItayeb 1977). 

Some of this work was carried out a t  the University of Newcastle upon Tyne and 
I would like to  thank Professor P. H. Roberts for making my visit possible. I would 
also like to thank the University of Khartoum for granting me paid leave during the 
time this work was carried out. I also wish to thank the referees for constructive 
criticism of an earlier version of the paper. 

Appendix 
Miles (1961) has shown that the solutions on either side of a critical level can be 

matched by simulating an initial-value problem. As a result the frequencyw is allowed 
to  contain a small negative imaginary part wi so that the phase jump across the critical 
level can be determined. We shall apply this procedure to the quantity x in (3.6) and 
(3.7).  For definiteness suppose that U ( 2 )  is such that it increases from a value U, in 
region 1 to U, in region 3. Suppose further that m, is real, k and w are positive and U, is 
such that Gz < - kV. Such a wave crosses the critical level k,, and then the critical 
level km-. Let 

I n  the neighbourhood of the critical level k,+ the value x+ of x (occurring where 
(3, = kV)  becomes 

where the subscript c refers to quantities evaluated at  the critical level 2,. If 

w = w,+iw,, lWil < IwoJ, wi < 0. (A 1) 

X+ 2kV/[i~,-leU~(Z-Z,)], (A 2) 

"%(X+) = 81, (A 3) 

then 
'wt/k U; 

tan8, = - 
(2 - 2,) 

and since oJlcUI, < 0 then 8, varies continuously from 0 to + rr as 2 varies from values 
much less than 2, to values much greater than 2,. 

In the vicinity of the critical level k,- we similarly have 

and consequently the jump in 6, as 2 increases through 2 is - T .  

It may then be concluded that arg (xl) = - arg (x,) and the net jump in phase 
across the two critical levels is zero, Similar arguments apply to all other cases in 
which two critical levels lie within the layer. 
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